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The electron density of the water molecule 
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The electron density of the water molecule, as calculated by a standard 
program, is approximated by linear combinations of spherical Gaussians. The 
accuracy of the result is studied as a function of the numbers and positions 
of the Gaussians. Since this shows where the charge is located in the molecule 
it has immediate physical significance. The building-up of the density can be 
followed in more and more detail. From these expansions, point charge models 
of water are readily deduced. These are compared with models of similar 
kinds used by other authors. Some of the calculations have been repeated 
with a wavefunction of higher accuracy to investigate the stability of the 
results. Results show that the more accurate density requires more Gaussians 
to represent its greater complexity. 
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1. Introduction 

Now that advances in computing have made it possible to calculate many 
wavefunctions for molecules there is an increasing need for methods of summariz- 
ing and comparing the results so that the insight which they contain into the 
structure of the molecule can be fully exposed. This paper is concerned with two 

examples  of this. It demonstrates a method o~f analysing the electron density in 
such a way as to display clearly its important features. It also derives a point 
charge model which has certain advantages in the calculation of particular 
molecular properties such as the molecular electrostatic potential and its derived 
electric field. 

The Hohenberg-Kohn [1] theorem has produced a major change in the interpreta- 
tion of theoretical chemistry. In the past it was thought essential to analyse the 
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electron correlation function in order to understand chemical bonding etc. Now 
it is clear that a full understanding of the electron density is sufficient to explain 
all the properties which the molecule has in a particular state. Comparisons of 
electron densities using difference maps have clarified many features of bonds 
in small molecules but are very limited in application to larger systems. Numerical 
comparisons generalize more readily. One such entity, and perhaps the only one 
in regular use, is the Mulliken population [2]. A recent review [3] discusses the 
defects of  this definition and of various attempts to improve it. This paper uses 
a different kind of analysis of the electron density which is more flexible and 
more accurate. It fits the electron density by a linear combination of Gaussians 
centered on different points, using a fitting functional which is the square of the 
error in the electric field [4]. Such an approximation can be very compact 
compared with the original density and so easier to interpret. Details of the 
method of calculation are given in the preceding paper [5]. 

Compact representations of the electron density can be used for many purposes. 
In particular, the molecular electrostatic potential (MEP) at any point is more 
easily calculated. This quantity dominates the long-range intermolecular forces 
and so exerts a major influence on chemical reactivity and molecular beam 
scattering. The MEP can be calculated very rapidly using point charge models 
to represent the electrons. A very simple method exists of deriving such models 
from the approximate Gaussian models [6]. 

To demonstrate the utility of these methods in detail a calculation on the water 
molecule is reported. The major terms in the electron density are identified and 
located. By repeating the calculation with a more accurate wavefunction the 
sensitivity of  the results to the complexity of the wavefunction can be judged. 
Point charge models of  different levels of  accuracy are derived and compared 
with those used by other authors. Many authors have started with some concept 
of the density and used it as a model the parameters of  which were determined 
by fitting selected empirical data. The adequacy of  their ideas as well as the 
accuracy of their models can now be tested. 

2. The atomic models 

The simplest concept of  a molecular density is as a sum of spherically-symmetrical 
densities centered on each atom of the molecule. This model is adequate enough 
for some purposes. The idea behind the definition of atomic populations is also 
that of spherical densities and this becomes explicit when populations are used 
to define point charge models [7]. On the other hand the concept ignores 
significant aspects of bonding so its accuracy is limited. In this section these 
limits will be explored. 

The simplest model involving only the three nuclear centers would have three 
Gaussians. This is so bad a representation of  the nuclear cusp that it was not 
used. With two Gaussians on the O nucleus the density begins to concentrate in 
the inner region and the result is poor  but sensible. The use of more Gaussians 
improves tire representation of the valence electron densities and also gives 
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sharper densities at the nuclei (i.e. uses larger exponents). The details of the 
exponents and charges for each Gaussian in two of these models, the simplest 
and the most elaborate, is given in Table 1. It is convenient to label these Gaussian 
models by (r, s), where r is the number of centres and s the total number of 
Gaussians. The charges for all Gaussian models are listed as electron charges 
whereas for point charge models proton charges are used. All distances quoted 
are in /~ .  

Table 1 shows how the extra flexibility of the (3, 9) model is used to improve 
the shape of the density in each atom and how the electronic charge is distributed 
among the Gaussians on each atom. The total electron charge on each atom does 
not change very much. Figure 1 shows the error integral (i.e. U, in the notation 
of [5]) for each (3, n) model as a function of n, the total number of Gaussians. 
The models in this section are in the sequence with label 3. It can be seen from 
this that there is a significant improvement in the models on going from 6 to 7 
Gaussians and this means giving the O a third Gaussian so that two represent 
the K shell and one the valence electrons. Of course, for the density these 
categories are not so precise as in an orbital picture and the charges are not close 
to integers but the interpretation seems to remain good. Figure 1 also shows that 
the improvement from 8 to 9 Gaussians is very small so that this is close to the 
limit of accuracy obtainable using three centres and spherical densities. 

To derive the point charge models from these Gaussian models each Gaussian 
is shrunk to a delta function [6]. This process preserves all the spherical moments 
(for a more general proof  of this see [8]) so all the angular dependence is retained. 
The two point charge models from the Gaussian models above are shown in 
Table 2. A model from previous calculations [9] using the Snyder-Basch [10] 
wavefunction is given to show the effect of using a different starting wavefunction. 
Two models derived by fitting the electron density [11, 12] show the sensitivity 
of these results to different versions of this criterion. Clementi and his colleagues 
have used the long-range forces between dimers to fix their atomic charges and 
the position of the O charge, which moves on the axis towards the H atoms. 

Table 1. The exponents  and charges of  the Gaussians  in two models  of  water using 
the nuclei only as centers. The charge is in electrons 

Total charge 
Label Atom Exponent  Charge on atom 

(3, 4) O 1.05995 6.80785 
52.84929 1.68505 8.49290 

H 1.01999 0.75355 0.75355 
(3,9) O 0.68212 2.99043 

1.36258 3.86689 
31.97357 1.21855 

104.68234 0.49838 
508.18792 0.04971 8.62396 

H 0.33115 0.31881 
2.67226 0.36921 0.68802 
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Fig. 1. The error integral, U, (in hartrees) for 
Gaussian models of water as a function of n, the 
total number of Gaussians. The label denotes the 
number of centres. The original electron density is 
from a STO-6G wavefunction 

They  d i s t ingu i sh  in the i r  results  be tween  ca lcu la t ions  wi thout  cor re la t ion  [13] 
and  with  co r re la t ion  [14, 15]. Also  in this t ab le  are the  s imi lar  models ,  given by  
Brobjer  and  Murre l l  [16] and  by  K o l l m a n  [17], which  use the expe r imen ta l  d ipo le  
moment .  ( I t  shou ld  be  no ted  tha t  this is the  s imples t  o f  the  Brobjer  and  Murre l l  
models .  The i r  more  a d e q u a t e  mode l s  do not  c o m p a r e  so di rec t ly  with those  here.)  
The m o d e l  used  by  Ray  et al. [18] is d e d u c e d  by  fitting the  MEP.  It  can be seen 
that  all are  a l ike  in mak ing  the O negat ive  and  by  a b o u t  the same a m o u n t  bu t  
the  number s  do  not  agree  because  o f  thei r  very different  sources.  

I t  shou ld  be  no ted  that  these  mode l s  do  not  refer  to exact ly  the same geomet ry  
t hough  this does  not  have a large effect on the  results.  

Table 2. Point charge models of water using nuclear 
charges only. These charges are in protons 

Net O charge Net H charge Source 

-0.492 0.246 (3,4) 
-0.62396 0.31198 (3, 9) 
-1.167 0.584 [9] 
-0.593 0.296 [11] 
-0.614 0.307 [12] 
-1.34072 0.67036 [13] 
-1.50348 0.75174 [15] 
-0.6574 0.3287 [16] 
-0.658 0.329 [17] 
-0.56 0.28 [18] 
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3. The lone pairs 

There are several possible posit ions for an extra charge outside the spherical 
atoms of  the previous section. By trying alternatives, it was shown that the lone 
pair  region, as might  be expected,  is the most  important .  Models  with some 
Gaussians centered in the lone pairs, 5-center models,  should be more  accurate 
and more  useful than the simpler 3-center ones above. 

Table 3 shows the details o f  three (5, n) models ,  each having one Gauss ian  on 
each lone pair  (denoted by l) and two on each of  the H nuclei. 

This table shows several dramat ic  effects. Whereas  in the (5, 8) model  each lone 
pair  charge is more  than 3 electrons, in the more  accurate models  it reduces to 
about  1/2 electron. To compensate ,  one o f  the O functions which is not  represented 
in the (5, 8) model ,  begins to collect over 5 electrons. This clearly illustrates the 
danger  o f  drawing conclusions too soon! The asymmetry  due to the lone pairs 
is impor tant  but it is exaggerated in the first funct ion because there is not  sufficient 
flexibility on the O to represent the valence electrons. The later funct ions have 
three or four  O functions so the lone pair  funct ions do represent the genuine 
lack of  spherical  symmetry  and their effect is small but  significant. 

This kind of  major  change in the location o f  charge, as the number  o f  Gaussians 
is increased,  is often associated with the presence of  a diffuse Gaussian in the 
model.  These functions,  having exponents  smaller than 1, are spread over the 
molecule and should  not  be regarded as belonging exclusively to one part  of  it. 
They compete  with the more  localized Gaussians in describing the total charge 

Table 3. Exponents and charges for models on nuclei and lone pairs. The lone pair-O distance is lOll 
and is in 

Total charge 
Label Site IOl I Exponent Charge on site 

(5, 8) O 34.37057 1.40037 
163.98346 0.37804 1.77841 

l 0.174 1.22218 3.15136 3.15136 
H 0.47361 0.47624 

2.12756 0.48319 0.95943 
(5,9) O 0.89233 5.37491 

38.53273 1.41504 
189.04908 0.29746 7.08741 

1 0.236 3.20707 0.66031 0.66031 
H 0.46404 0.35667 

2.12756 0.43931 0.79598 
(5, 10) O 0.93507 5.73263 

28.05798 0.72038 
55.63883 0.84340 

256.32041 0.18178 7.47819 
l 0.257 4.08644 0.45766 0.45766 
H 0.39547 0.35471 

2.12756 0.44853 0.80324 
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in each region and so provide a coupling between the localized charges in the 
fitting equations. This can lead to the major changes in the charges which is 
found when a new function is added. In our previous paper [9] it has been shown 
that by partitioning the Gaussians, and especially the diffuse Gaussians, after 
the manner proposed by Bader [19] the worst effects of these changes can be 
removed. The atomic charges and dipoles are then defined by integration over 
the space assigned to each atom. This produces a partitioning of each Gaussian 
charge. The atomic charges and dipoles so defined are remarkably stable, even 
when the Gaussian charges suffer major changes during the improvement of the 
fit, and justify their use as general definitions of these quantities. Thus, for 
example, the charge on O for the third fitting listed in Table 2 is reduced from 
-1.167 to -0.650 which is much closer to the values in the remaining models. 
The charges listed here have not been partitioned and are less precise in their 
interpretation of the location of the charge density components, since all the 
charge on a diffuse function is located at its center. On the other hand, they have 
the major advantage of  relating to spherical densities and leading directly to a 
point charge model involving the location of  charges on or off the nuclei. The 
Bader atomic density loses spherical symmetry because of its spatial boundary 
and so many atomic moments are required to describe it. Its charges and moments 
are more easily related to the "segmented multipole moment"  [20] models which 
have charges and multipoles on the nuclei. 

In these models the most diffuse Gaussian is on each H atom. Its exponent 
changes as the number of Gaussians on O changes and so does its charge. In 
contrast, the more localized Gaussian on H optimizes with exactly the same 
exponent and very similar charge. 

The small charges in these models are also of interest. They indicate the size of 
the smallest amount of charge which has been successfully allowed to find its 
correct location during the optimization. In these models this size has reduced 
to 0.18 electron. This gives a crude, but ready measure of the fitting error. 

The errors of these (5, n) models are shown in Fig. 1 with the label 5. It can be 
seen that the error has been significantly reduced by the extra flexibility due to 
these lone pair Gaussians. This reduction is a measure of the asymmetry in 
electron density around the O. The large drop in the error when the O acquires 
3 Gaussians is also seen in both (3, n) and (5, n) sequences. 

Point charge models of the water lone pairs have been widely used in various 
chemical contexts especially when some representation of the hydrogen bond 
was required. Some are listed in Table 4 along with those derived from the models 
above. 

With the exception of the (5, 8) model, which is the least accurate one, these 
models show broad agreement. The H charge is seen to be small and positive. 
The lone pair charge is fairly small and the net remaining O charge is so small 
that even its sign is not agreed. The largest difference is in the O-I distance but, 
since the other authors had no direct means of  determining this, some differences 
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Table 4. Point charge models of water including lone pairs 

77 

IO11 Net O charge I charge Net H charge Source 

0.174 6.2216 -3.1514 0.0406 (5,8) 
0.236 0.9126 -0.6603 0.204 (5,9) 
0.257 0.5218 -0.4577 0.1968 (5,10) 
0.8 Q -0.2357 0.2357 [21] 
1.4 -0.300 -0.078 0.228 [17] 
0.7 -0.144 -0.156 0.228 [17] 

must  be expected. It is more significant that  this distance mul t ip l ied  by the lone 
pair  charge i.e. the lone pai r  moment ,  does no t  vary by much.  

4. The OH bond 

The Gauss i an  models  above effectively ignore any lack of spherical  symmetry 

a round  the H nucleus.  A diffuse func t ion  on the O will p roduce  a small  asymmetry  

a round  the H but  such funct ions  are inf luenced by the whole molecule  rather 
than  any one part  of  it so that  this may not  be significant. I f  the electron densi ty 
is to express the effect of  bond ing  then some change of shape a round  H must  
be expected. In  this section some models  of the OH region will be described. In  

these models  the accuracy is increasing but  so is the complexi ty of the model.  

Table 5 gives the details of  three models  which include these cont r ibut ions  in 
the OH bond .  For  convenience  a Gauss ian  along the b o n d  will be denoted  as c. 

Table 5. Gaussianmodels including lone pair and OH bondfunctions 

Label Site [O1] or[Oc[ Exponent Charge Total charge 

(7,7) O 58.27035 1.55603 
l 0.193 3.19711 0.93770 
c 0.031 0.78683 2.59564 
H 1.37472 0.68865 

(7, 10) O 0.93507 5.40179 
28.05798 0.72842 
55.63884 0.83690 

256.32040 0.18262 7.14973 
l 0.260 4.08644 0.49417 
c 0.612 0.39547 0.47557 
H 2.12756 0.45540 

(10,14) O 0.102 0.35465 -0.01693 
31.54198 1.11408 
83.89791 0.54027 

345.83829 0.09948 1.73690 
1 0.262 3.36363 0.56271 

-0.023 0.92651 2.73678 
c 0.821 0.30021 0.20213 
H 0.59650 0.19726 

2.12756 0.43268 0.63094 
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The O-c distance is then IOc I. There are several interesting features in this table. 
The third model is an example where the charge changes sign on one Gaussian. 
The significance of this is discussed in the preceding paper [5]. In this model 
one of the O Gaussians has been allowed to float off the nucleus and it has moved 
slightly into the lone pair region but is still in the molecular plane. It has a small 
positive charge. This model also has a second, more diffuse function to represent 
the lone pairs but it has floated through the nucleus to the H side of the O 
nucleus. Such a detailed model of the O valence region makes it more likely that 
a positive charge will arise. 

The (7, 7) model has a small charge centered on O. It is essentially the K shell. 
The OH charge is quite large since it includes the valence shell on that side of 
O and balances the lone pair charge on the other side. In the (7, 10) model, 
however, the O charge swings up again due to the extra O function which can 
represent the valence shell more adequately. The (10, 14) model provides another 
option, a second Gaussian for each lone pair, and this suits the valence shell 
even better. Although some of the changes in charge are large, they are more 
apparent than real since the charge is sometimes moving only a short distance 
and some functions are quite diffuse. 

This table includes an example of the process, described in [5], of developing a 
model in small stages. The Gaussians used in the model (7, 10) have the same 
exponents as those in model (5, 10). The only difference is that a H function has 
been allowed to float into the bond. The redistribution of charge is not large but 
it is significant. This model is probably at a local minimum and so further 
improvement in fitting can be obtained by a reoptimization from a new starting 
point. 

The error in these models is plotted in Fig. 1 as the sequence labelled 7 except 
for the third function which is the point 10. It can be seen that increasing the 
number of  centers in these models is not always beneficial since, for the same 
number of Gaussians, some of the 5 sequence models are more accurate. The 
broad conclusion from these models is that improving the lone pair region and 
putting at least two Gaussians on H is more important than having a Gaussian 
in the OH bond but that it does then give an improvement. The (10, 14) model 
above is the most accurate one calculated in this paper. 

Table 6. Point charge models using OH functions 

Net Net 
lOll 1 charge O charge H charge c charge lOci Source 

0.193 -0.9377 6.4440 0.3113 -2.5956 0.031 (7, 7) 
0.260 -0.4942 0.8503 0.5446 -0.4756 0.612 (7, 10) 
0.262 -0.5627 "~ 
0.023 -2.7368 J 6.2631 0.3691 -0.2021 0.821 (10, 14) 

0.297 - 2  6 1 - 2  0.57 [22] 
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The point charge models derived from these Gaussian models are shown in Table 
6. This also includes a model due to Shipman et al. [22] in which the charges 
are taken to be integers and the two position parameters are determined using 
experimental properties of  ice. It is interesting to note that, for such a type of 
model, the charges calculated here are not greatly different from theirs. 

5. Comparisons with other wavefunctions 

In our earlier paper  [9] water was included as one example. The original wavefunc- 
tion was the Snyder-Basch function [10] which is a relatively simple function. 
Although only Gaussians on the nuclei were used, the approximate  density 
converged to a very low error after a modest  number  of  terms, 6 or 7 Gaugsians 
being sufficient to reduce the error to 0.01. Since the total self-energy is about 
47 hartree, this represents a high accuracy. In this paper  the wavefunction is a 
STO-6G one which has many more primitive Gaugsians in the orbitals and a 
much more complicated density function. The result is that the fitting has a slower 
convergence and, with a limited number  of terms, gives a larger limit. The best 
fit here has an error of  0.089. 

To investigate further the sensitivity of the results to the form of wavefunction, 
calculations were repeated using a 4-31G* basis, which includes polarization 
functions. Table 7 shows details of one of these models having 9 centers. 

This model is easily related to those above. It has two Gaussians for its K shell 
and represents the valence electrons through the lone pair functions. Since it is 
a (5, 9) model,  it directly compares with the previous (5, 9) model in Table 3. 
Perhaps the most significant difference between them is the change in the descrip- 
tion of the lone pair. Although 10 Gausgians are used the accuracy of this fit is 
rather low. The errors of  all the models calculated from this wavefunction are 
shown in Fig. 2. Even the smallest error is twice as large as for the STO-6G 
wavefunction used earlier and the sequences show little sign of convergence. The 
effect of  the polarization functions is to introduce more non-spherical character 
into the atomic densities. Since the models used here have a limited number  of  
spherical Gaussians this departure from the local spherical symmetry cannot be 
fully represented and so the error is larger. Thus the pattern discerned before, 
of  a more complex wavefunction being more difficult to fit, is repeated here. 

Table 7. A Guassianmodel based on a polarization wavefunction 

Label Site ]Of I Exponent Charge Total charge 

(5,9) O 0.74286 5.16919 
36.21397 1.40124 

181.44297 0.32630 6.89673 
l 0.133 2.70911 0.86295 0.86295 
H 0.24633 0.22688 

1.88290 0.46181 0.68869 
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6. The molecular electrostatic potential 

One of the principal uses of  point charge models is in making rapid calculations 
of  the MEP. This is especially needed in molecular dynamics simulations where 
the speed of  calculation is a limiting factor. Many of the point charge models 
quoted above were developed for this purpose. 

A major  feature of  the MEP is the presence of a minimum in the outer parts of  
some molecules. This occurs in lone pair regions and also in some double bonds 
and bent bonds. Clearly, it is important in estimating the intermolecular forces 
with a proton or when an electropositive region in another molecule is concerned. 
Representing such a feature is not easy, Earnshaw's  theorem [23, 8] says that a 
potential cannot  have a minimum except at a point occupied by a negative charge. 
Thus models which use the nuclei alone, even though they have several multipoles 
there, will fail to represent this feature. On the other hand a point charge model 
which has a charge in the lone pair, can do so. This is the principal reason why, 
in this paper,  models are used which include points off the nuclei rather than 
having a variety of  multipoles on them. 

There is another  advantage in moving some functions off-center. When molecules 
come close the asymptotic form for the forces is no longer adequate to express 
their interaction. Penetration effects begin to play an important role. These are 
significant when the molecules begin to be involved in bonding, as in some 
applications to chemical reactions. A set of  point charges can be used to represent 
these penetration effects [4]. In the simple point charge models of  this paper  
penetration is not well represented but, because the error is taken over all space, 
it is included in the Gaussian models and so does have some effect on the point 
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charge models. These models should then remain valid at shorter intermolecular 
distances than models that use only the nuclear charges and multipoles. At small 
intermolecular distances the MEP alone is not sufficient to represent the interac- 
tion so the models should not be applied then. 

7. Conclusion 

This paper has demonstrated the analysis of a wavefunction through its electron 
density. It has located the concentrations of charge and shown alternative ways 
of representing them, It has also deduced point charge models from ab initio 
wavefunctions in a rigorous way instead of using arguments the accuracy of 
which can be debated. In particular it offers point charge models which can 
describe the lone pairs of molecules much more accurately. 
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